Abstract:
Background/Objectives: The leakage of 5-fluorouracil (5-FU) from elastomeric infusion pumps used in cancer therapy poses a potential risk of unintentional exposure to multiple individuals, including patients’ relatives and healthcare professionals, and may also compromise the accurate administration of 5-FU dosages to patients. This study aimed to develop, validate, and apply an analytical method to detect and quantify 5-FU residues on the external surfaces of infusion pumps.
Methods: A high-performance liquid chromatography with diode-array detection (HPLC-DAD) method was optimized for the quantification of 5-FU contamination across different components of the infusion pump, including the hard casing, infusion tubing, and catheter connection port. A mobile phase containing 5% acetic acid was used to obtain more efficient separation of 5-FU and the detection was performed at 260 nm. The method was evaluated for linearity, sensitivity, precision, accuracy, selectivity, robustness, and stability.
Results: The method demonstrated linearity within the range of 0.150 to 3.000 µg/cm2, with limits of detection and quantification of 0.05 µg/cm2 and 0.14 µg/cm2, respectively. Relative standard deviations ranged from 1.8% to 12.7%, and accuracy exceeded 85%. In real sample analysis, detectable residues were found around the catheter connection port.
Conclusions: This screening-oriented method addresses an existing gap, as previous contamination reports were based solely on self-reported user observations. The detection of 5-FU residues highlights the critical need for safe handling practices and the consistent use of personal protective equipment (PPE) to protect healthcare workers, especially nursing staff involved in the removal of the infusion pumps, after treatment.
Reference:Cardoso A, Jesus Â, Barreiros L, Carvalho D, Sá MDA, Carvalho S, Correia P, Moreira F. Safeguarding Patients, Relatives, and Nurses: A Screening Approach for Detecting 5-FU Residues on Elastomeric Infusion Pumps Using HPLC-DAD. Toxics. 2025 May 21;13(5):416. doi: 10.3390/toxics13050416. PMID: 40423495; PMCID: PMC12116019.