The objective of this study was to validate the transfer of ultrasound-guided Internal Jugular Central Venous Catheterization (US-IJCVC) placement skills from training on a Dynamic Haptic Robotic Trainer (DHRT), to placing US-IJCVCs in clinical environments” Chen et al (2019).

Abstract:

BACKGROUND: The objective of this study was to validate the transfer of ultrasound-guided Internal Jugular Central Venous Catheterization (US-IJCVC) placement skills from training on a Dynamic Haptic Robotic Trainer (DHRT), to placing US-IJCVCs in clinical environments. DHRT training greatly reduces preceptor time by providing automated feedback, standardizes learning experiences, and quantifies skill improvements.

METHODS: Expert observers evaluated DHRT-trained (N = 21) and manikin-trained (N = 36) surgical residents on US-IJCVC placement in the operating suite using a US-IJCVC evaluation form. Performance and errors by DHRT-trained residents were compared to traditional manikin-trained residents.

RESULTS: There were no significant training group differences between unsuccessful insertions (p = 0.404), assistance on procedure (p = 0.102), arterial puncture (p = 0.998), and average number of insertion attempts (p = 0.878). Regardless of training group, previous
central line experience significantly predicted whether residents needed assistance on the procedure (p = 0.033).

CONCLUSION: The results failed to show a statistical difference between DHRT- and manikin-trained residents. This study validates the transfer of skills from training on the DHRT system to performing US-IJCVC in clinical environments.

You may also be interested in...

Haptic robotic trainer for central venous catheterization
Guidewire problems during central venous catheter placement
Clinical outcomes of tunneled central jugular and femoral central venous catheters

Reference: