Register for citation alerts

Assessing patient risk of central line-associated bacteremia via machine learning

Machine learning can be used to develop accurate models to predict the risk of CLABSI in real time prior to the development of infection” Beeler et al (2018).

Abstract:

Background: Central line-associated bloodstream infections (CLABSIs) contribute to increased morbidity, length of hospital stay, and cost. Despite progress in understanding the risk factors, there remains a need to accurately predict the risk of CLABSIs and, in real time, prevent them from occurring.

Methods: A predictive model was developed using retrospective data from a large academic healthcare system. Models were developed with machine learning via construction of random forests using validated input variables.

Results: Fifteen variables accounted for the most significant effect on CLABSI prediction based on a retrospective study of 70,218 unique patient encounters between January 1, 2013, and May 31, 2016. The area under the receiver operating characteristic curve for the best-performing model was 0.82 in production.

Discussion: This model has multiple applications for resource allocation for CLABSI prevention, including serving as a tool to target patients at highest risk for potentially cost-effective but otherwise time-limited interventions.

Conclusions: Machine learning can be used to develop accurate models to predict the risk of CLABSI in real time prior to the development of infection.



Reference:

Beeler, C., Dbeibo, L., Kelley, K., Thatcher, L., Webb, D., Bah, A., Monahan, P., Fowler, N.R., Nicol, S., Judy-Malcolm, A. and Azar, J. (2018) Assessing patient risk of central line-associated bacteremia via machine learning. American Journal of Infection Control. April 13th. .

DOI: https://doi.org/10.1016/j.ajic.2018.02.021