To estimate the cost-effectiveness of safety-engineered devices (SEDs) relative to non-SEDs for winged steel needles, intravenous catheter stylets, suture needles, and insulin pen needles” Fukuda and Moriwaki (2016).

Abstract:

OBJECTIVE: To estimate the cost-effectiveness of safety-engineered devices (SEDs) relative to non-SEDs for winged steel needles, intravenous catheter stylets, suture needles, and insulin pen needles.

DESIGN: Decision analysis modeling.

RESULTS: In the base-case analysis, we calculated the incremental cost-effectiveness ratios of SED winged steel needles, intravenous catheter stylets, suture needles, and insulin pen needles to be $2,633, $13,943, $1,792, and $1,269 per needlestick injury avoided, respectively. Sensitivity analyses showed that the calculated incremental cost-effectiveness ratio values for using SEDs did not fall below zero even after adjusting the values of each parameter.

CONCLUSION: The use of SED needle devices would not produce cost savings for hospitals. Government intervention may be needed to systematically protect healthcare workers in Japan from the risk of bloodborne pathogen infections.
Reference:


Thank you to our partners for supporting IVTEAM