The following case studies describe the use of the Smith Medical implanted ports and Gripper huber needles” Meade et al (2019).

Abstract:

The following case studies describe the use of the Smith Medical implanted ports and Gripper huber needles. Smiths Medical produces a range of implanted ports that include the Port-A-Cath and P.A.S. Port Power P.A.C. systems. The ports are easy to implant, maintain and remove. They are lightweight and have features that are designed to reduce complication rates, including a highly compressed septum to increase needle retention, a titanium chamber with a gouge-resistant floor, a bevelled chamber for optimal rinsing, a round shape to avoid overturning and the Ultralock connection. They are available in various configurations, with single and dual lumens. There is also a needle for power-injection of contrast media for certain types of diagnostic imaging scans (Smith Medical 18). The Gripper Plus needle is designed with an emphasis on safety, effectiveness and patient comfort. These non-coring needles have a bevelled tip that sits flush with the back of the port without impeding the flow of fluid; this also prevents holes forming in the septum (Barton et al, 2018). The needle is available in different gauges and lengths, which can be tailored to reflect individual patient needs and the amount of adipose tissue present. It is essential to select the correct size, which will reduce the risk of dislodgement. The Gripper needles are compatible with paclitaxel and lipid solutions, and are recommended by the National Institute for Occupational Safety and Health (NIOSH) (1999). They are compatible with both the Port-a-Cath and P.A.S. Port Power P.A.C. systems, and can be ordered from the same manufacturer, which has the potential to make ordering, training and support more efficient.

You may also be interested in...

Best practice for using ports and non-coring needles
Comparison of complications between peripheral arm ports and central chest ports
Implantable ports for prophylactic RBC exchanges in sickle cell patients
Reference: