Dynamic ultrasound-based visualization of microbubbles in the right atrium is a highly accurate method to detect percutaneous implantation of large-lumen, tunneled, central venous catheters without the need for fluoroscopic guidance technology” Passos et al (2018).

Abstract:

BACKGROUND: In patients with end-stage renal disease, the use of cuffed, tunneled dialysis catheters for hemodialysis has become integral to treatment plans. Fluoroscopy is a widely accepted method for the insertion and positioning of cuffed dialysis catheters, because it is easy to use, accurate and reliable, and has a relatively low incidence of complications. The purpose of our study was to evaluate the feasibility of tunneled hemodialysis catheter placement without the use of fluoroscopy but with a dynamic ultrasound-imaging-based guided technique.

METHODS: From January 2015 to December 2017, we performed an observational prospective cohort study of 56 patients with end-stage renal disease who required tunneled dialysis catheter placement.

RESULTS: The overall success rate for ultrasound-guided central access was 100%, with a mean number of 1.16 (±0.4) attempts per patient. There were no incidences of guide wire coiling/kinking, carotid puncture, pneumothorax, or catheter malfunction. Catheter flow during dialysis was 286 (±38) mL/min. The total number of catheter days was 7451, with a mean of 133 days and a range of 46-322 days. Life table analysis revealed primary patency rates of 100%, 96%, and 53% at 30, 60, and 120 days, respectively.

CONCLUSION: Dynamic ultrasound-based visualization of microbubbles in the right atrium is a highly accurate method to detect percutaneous implantation of large-lumen, tunneled, central venous catheters without the need for fluoroscopic guidance technology. Future research should further develop and confirm these initial findings.
You may also be interested in...

Reference:
