Data from this in vitro study may suggest that patients at high risk for invasive candidosis could benefit from the use of CSS-CVCs” Cobrado et al (2017).

Abstract:

Background: Whenever the rate of central line-associated bloodstream infections (CLABSIs) remains high even after the implementation of preventive strategies, the use of chlorhexidine/silver sulfadiazine (CSS) or minocycline/rifampin (MR)-impregnated central venous catheters (CVCs) is currently recommended. Nevertheless, the efficacy of such CVCs against Candida albicans and other emerging non-albicans spp. has been insufficiently studied. This study aims to compare the activity of CSS and MR-impregnated CVCs against the yeasts most frequently isolated from CLABSIs.

ReTweet if useful... Anti-Candida activity of antimicrobial impregnated central venous catheters https://ctt.ec/z93T5+ @ivteam #ivteam

Click To Tweet

Methods: For biofilm formation assays, type strains and clinical isolates of C. albicans, C. glabrata and C. parapsilosis sensu stricto were used. Segments of standard polyurethane, MR and second-generation CSS-CVCs were tested. The biofilm metabolic activity was measured by a semi-quantitative XTT reduction assay.
Results: CSS catheter segments significantly reduced the biofilm metabolic activity by all tested Candida spp., with inhibition ranging from 60% to 100%. The MR catheter segments promoted C. albicans and C. parapsilosis biofilm formation and exhibited an inconspicuous effect against C. glabrata.

Conclusions: Among the recommended antimicrobial CVCs, CSS-CVCs proved to be superior in the inhibition of biofilm formation by the most frequent yeasts causing CLABSIs. Data from this in vitro study may suggest that patients at high risk for invasive candidosis could benefit from the use of CSS-CVCs.

Reference:


https://doi.org/10.1186/s13756-017-0269-x

Thank you to our partners for supporting IVTEAM